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Abstract—Drones are popular due to their ability to take
off and land vertically, high maneuverability, and hovering
capability. However, they are highly unstable and susceptible to
external disturbances. In this project, we examine flip maneuver
which exploits the quadrotor’s agility while maintaining stability
simultaneously. The flipping pipeline consists of three main
modules: trajectory planner, tracking controller and stabilizing
controller. A smooth three-stage flipping rate profile is generated
in account for the limited sensing and actuating capabilities
of the micro quadrotor. A PD controller is used for executing
the rapid trajectory for the flip, then switched to a cascaded
PID to re-stabilize the quadrotor during normal flight. Beside,
a full-state feedback LQR controller is designed to test with the
stabilization phase. These modules provide the drone with an
ability to perform autonomous flip. Simulation and experimental
tests on a Crazyflie quadrotor are successful. However, hardware
performance is not consistent and in need of further works.

Index Terms—Quadrotor, LQR, PID, Autonomous Flip, Tra-
jectory Tracking

I. INTRODUCTION

Quadrotors have gained popularity in several decades. Due
to its high maneuverability, hovering capability, and ability to
take off and land vertically, it poses as the ideal candidate for
various tasks such as payload delivery, searches and rescue,
and surveillance. The high maneuverability of a quadrotor
is due to its 6 DOF, which allows it to move in complex
trajectories. However, quadrotors are highly unstable and sus-
ceptible to disturbances. One needs a robust controller to fully
utilize the quadrotor’s ability to track complex trajectories
and be stable simultaneously. Many on-going projects are still
focusing on manipulate quadrotors to their fullest capabilities,
pushing the limit of this interesting subject.

Drone acrobatic movement is one of the best ways to
showcase complicated design and impressive manipulation.
This is not only for entertainment but also very useful for
numerous challenging applications as listed above.

Here, we have implemented autonomous flip maneuver on
the micro-quadrotor as it is an interesting and solid way to test
its flight capabilities. We use the Crazyflie quadrotor for this
objective. Not only is this flyer smaller and lighter than usual
quadrotors used in high-speed aerobatic research, but it also
has a larger motor time constant, a lower thrust-to-weight ratio,
and substantially less computational power [1]. Additionally,
we do not use motion capture systems like Vicon or powerful
instrumented flyers in outdoor arenas in this research; rather,
we simply use the quadrotor’s on-board sensor capabilities.
The procedure of synthesizing controllers for the scenario

Fig. 1: The whole process of a multi-flip maneuver is com-
posed of: the climb phase, the flip phase, and the descent and
re-stabilization phase. [1]

presented here is extremely difficult experimentally due to the
aforementioned factors.

A single flip is typically executed in 0.5 seconds and
demonstrates the controllability of the quadrotor’s movement
to follow a rapid trajectory. This maneuver is accomplished by
using a flipping planner that generates the angle rate profile
for the maneuver and two specialized controllers: flipping and
stabilizing controllers. The flipping planner outputs a trajectory
for the quadrotor to follow. This is divided into five stages,
the Climb stage, the Increasing angular velocity stage, Max
angular velocity stage, Decreasing angular velocity stage, and
Stabilizing stage (see Fig. 1). The controllers switch during
flight to flip and stabilize the quadrotor. The PD controller
is used for executing the flip, and cascaded PID and LQR
stabilize the quadrotor in normal flight mode after the flip
execution is completed.

The rest of paper is organized as follows. Section II de-
scribes relevant works and our base reference, Section III mod-
els the dynamics of the flying system for both nonlinear and
linearized models, Section IV presents our design including
speed planner, tracking controller and stabilizing controller.
Section V demonstrates several simulation results. Section VI
describes the micro unmanned aerial vehicle and experimental



setup. Experimental results are presented and discussed in
Section VII. Lastly, some conclusions are drawn in Section
VIII.

II. LITERATURE REVIEW

Aggressive maneuvers for drones have been a topic studied
for a long time. The limited computing power and sensor
inputs for a quadrotor make the task challenging and inter-
esting. These were achieved mainly using classical controls
and recent learning-based methods. Article [2] introduced a
way in which any aggressive maneuvers can be divided into
phases, and various control strategies can be employed to
complete each phase. They design safe regions for any action
using Hamilton-Jacobi differential game formulation. This
paper focuses on guaranteeing safe regions of operation. They
demonstrate the results on a back-flip, where the flip is divided
into 3 regions: recovery, drift, and impulse. Although the paper
suggests an extremely safe method for acrobatic maneuvers,
the complexity of the regions makes it hard to implement on
real hardware. Paper [3] introduces a technique for trajectory
generation and control for aggressive routines in quadrotors.
The core idea of the paper is to compose any maneuver as
cascaded controls: Attitude control, Hover control, and 3D
path following control. They show the generalizability of the
idea by experimenting with 4 diverse aggressive scenarios. We
decided to use the idea of generating trajectories as phases and
switching between different controllers in our project.

Article [4] suggests a learning-based approach for perform-
ing highly aggressive maneuvers on drones. They train a
Reinforcement Learning network that takes Camera and IMU
data as input and generates the trajectory required for the
operation. The reward function gives a positive reward based
on an MPC-generated trajectory. They demonstrate the ability
of this network using various experiments based on a swarm
of quadrotors. Although the paper recommends an end-end to
end trajectory generator, the complexity and time requirements
for training the RL model made the method inapplicable.

Paper [1] aims to perform single and multiple flips on a
Crazyflie using two controllers and a time-dependent trajec-
tory. They employ a cascaded PID controller for normal op-
erations like hovering while it uses a PD-like controller while
performing the flip. The trajectory function gives the angular
velocities about the flipping axis based on the time inputted.
The angular velocities across non-flipping axes are zeros. So
the flipping controller takes the three angular velocities and
their derivatives as input. The paper provided a simple yet
powerful technique for drone flipping, but the parameters for
trajectory and controllers in the entire paper were based on
Crazyflie 1.0. This work is chosen as our base reference to
develop a novel flipping pipeline in Crazyflie 2.1.

III. SYSTEM MODELING

The first step in this project was to derive a mathematical
model of the drone that could accurately represent the dynam-
ics and constraints of the drone. This model is then used for
the simulation and designing of the state feedback controller

(LQR). The mathematical model of the drone is derived using
Newton-Euler equations of motion provided in [5].

A. Quadrotor Dynamics
When considering a complex body like the quadrotor, which

has 6 DOF, it is important to consider all the possible frames
of reference to understand the complex motion. In the case of a
quadrotor, we consider two frames: the drone body frame and
the inertial frame (also known as the world frame). Newton’s
equations of motion are given in the inertial frame, whereas the
aerodynamic forces and torques are given in the body frame.

Fig. 2: Frames of reference.

We transform one frame of reference into another through
rotations. We use the Euler angle rotations to form a rotational
matrix that can convert the inertial frame to a body frame. The
matrix is as follows

Rib =

 cθcψ cθcψ −sθ
sϕsθcψ − cϕsψ sϕsθsψ + cϕcψ sϕcθ
cϕsθcψ + sϕsψ cϕsθcψ − sϕcψ cϕcθ

 (1)

where c(·) = cos(·) and s(·) = sin(·). The rotational matrix
for converting the body frame to an inertial frame can be
obtained by taking the inverse of Rib, which in this case is
equal to the transpose of Rib, R

b
i = (Rib)

⊺. Also, the rotational
matrix for converting the rate of change of Euler angles from
the body frame to the inertial frame is given as

Rir =

1 sin(ϕ) tan(θ) cos(ϕ) tan(θ)
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ)sec(θ) cos(ϕ)sec(θ)

 (2)

The 12 states of the drone are defined as follows.
x, y, z = position in x-axis, y-axis and z-axis (height)
u, v, w = body frame velocity in x-axis, y-axis and z-axis
ϕ, θ, ψ = roll angle, pitch angle and yaw angle
p, q, r = roll rate, pitch rate and yaw rate
Using the kinematics and dynamics equations of the quadro-

tor, the nonlinear model obtained is as follows-ẋẏ
ż

 = Rbi

uv
w

 (3)

u̇v̇
ẇ

 =

rv − qw
pw − ru
qu− pv

+

 g sin(θ)
−g cos(θ) sin(ϕ)
−g cos(θ) cos(ϕ)

+
1

m

 0
0

F +mg


(4)



Fig. 3: The system is stable

Fig. 4: The system is unstable

ϕ̇θ̇
ψ̇

 =

1 sin(ϕ) tan(θ) cos(ϕ) tan(θ)
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ)sec(θ) cos(ϕ)sec(θ)

pq
r

 (5)

ṗq̇
ṙ

 =


Iy−Iz
Ix

qr
Iz−Ix
Iy

qr
Ix−Iy
Iz

qr

+


Tϕ
Ix
Tθ
Iy
Tψ
Iz

 (6)

The mg term is added to account for the gravitational force.
Here, Ix, Iy , Iz , Tϕ, Tθ and Tψ are the moments of inertia
and torques in the respective directions.

B. Linearized Model

For designing the LQR controller, we need to derive the
linearized model of the drone. For this, the equilibrium points
of the system are identified and the nonlinear system model
is linearized around one of the equilibrium points. To find
the equilibrium points, the LHS of the nonlinear model is set
to zero and then we solve for the values of the states. From
the obtained results, it can be inferred that all the equilibrium
points of the drone are in the following form-

Xeq = [x, y, z, 0, 0, 0, 0, 0, ψ, 0, 0, 0]⊺

Hence, infinite equilibrium points exist with various com-
binations of x, y, z, and ψ and all other states as zeros.
This inference is tested through a MATLAB simulation where
the drone was simulated at an equilibrium point of the form
mentioned above and also at a point where some states other
than x, y, z, and ψ had some non-zero value. The simulation
results are provided in Fig. 3 and Fig. 4.

Fig. 5: Generalized flipping speed reference. [1]

We observe that the system is unstable at the point where
states other than x, y, z, and ψ have a non-zero value. Hence,
the intuition about the equilibrium point is right. The point
with all states as zero is chosen as the equilibrium point around
which the non-linear model is linearized. The linearization is
done by computing the Jacobian of the nonlinear model and
then substituting the state values as zero. The obtained A and
B matrices are shown below.

A =



0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 g 0 0 0 0
0 0 0 0 0 0 −g 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

, B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1
m 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1

Ix
0 0

0 0 1
Iy

0

0 0 0 1
Iz


The values of mass, inertia in all directions and motor

constants can be found in [6].

IV. CONTROLLER DESIGN

This section is split into 3 main parts- flipping trajectory
planner, stabilizing controller design, and flipping controller
design. The overall control architecture is designed to switch
between the two controllers based on the time and reference
trajectory. We plan to use the LQR controller during the
normal flight and stabilization phase and the flipping controller
during the flip stages of the trajectory.

A. Flipping Trajectory Planner

First, reference trajectory is defined to represent a flip
in mathematical form. This is the reference trajectory the
controllers need to track to perform the flip. The design of
the trajectory needs to factor in the dynamics of the drone
and the limitations of the hardware as well. The flip trajectory
is defined in the form of angular speeds instead of angles.
This has two benefits; namely, the trajectory can be designed
to better account for the actuating limits of the drone, and also
lower chances of stall [1].

We split the complex maneuver of flip into five stages to
for easier representation in mathematical forms and switch



between them based on time. The primary three middle
planning stages can be seen in Fig. 5.

The flipping planner outputs a trajectory for the quadrotor
to follow. This is divided into five stages as follows:

• Ascent phase: Here the quadrotor is boosted to obtain
moments and inertia before executing the flip.

• Increasing angular velocity phase: In this stage, the roll
rate slowly increases from 0 to ωmax.

• Max angular velocity phase: At this stage the ωmax is
commanded.

• Decreasing angular velocity phase: In this stage, the roll
rate decreases from ωmax to 0.

• Stabilizing phase: This phase is activated after a complete
flip. The quadrotor is stabilized and enters normal flight
mode.

Before performing a flip maneuver, we define a hovering
height. To start, the ascent phase ensures that the quadrotor
keeps climbing higher until the next stage reference is pro-
vided. This is an essential part of the trajectory as we want
the drone to maintain a certain height while flipping, and this
ascent helps us achieve this goal. We provide this climbing
trajectory for a fixed amount of time and then switch to the
increasing angular velocity phase.

In this stage, an angular velocity is provided in the axis
we wish to perform the flip motion about. We gradually
increase this angular velocity to obtain a smooth and feasible
motion. The angular velocity for this phase is calculated by
the equation below. [1]

ωd =
β1
3
(γ1)

3 − β1γ
2
1t+

β1γ
3
1

3
(7)

where,
• γ1 = ω−1

maxΦg
• β1

−3
4 γ

−3
1 ωmax

• ω̇max,1 = 3
4 · Φ−1

maxω
2
max

• Φg,1 is the desired amount of rotation generated during
the increasing angular velocity stage

• ω̇max,1 is the maximum flipping acceleration in the first
section of ωd

• The time duration of the first section ωd, ωd,1 is δ1 = 2γ1
Now comes the max angular velocity stage. During this

stage, the desired trajectory is provided as the maximum
angular velocity as defined in the following equation.

ωd,2(t) = ωmax (8)

with,
• The associated time duration is δ2 = ω−1

maxΦg,2
• Φg,2 is the desired amount of rotation generated during

max angular velocity stage.
The next stage is the decreasing angular velocity stage.

During this stage, we gradually decrease the angular velocity
to end the flip and set the drone up for the stabilizing stage.
The following equation describes the angular velocity in this
phase.

ωd,3(t) =
β3
3
(γ3+ δ

′

2− t)3−β3γ23(2γ3+ δ
′

2− t)+
β3γ

3
3

3
(9)

where,
• δ

′

2 is the ending time of previous stage
• γ3 = ω−1

maxΦg,3
• β3 = −3

4 γ
−3
3 ωmax

• ω̇max,3 = 3
4Φ

−1
g,3ω

2
max

• Φg,3 is the desired amount of rotation generated during
decreasing angular velocity stage

• The time duration for this stage is δ3 = 2γ3

Once we enter the stabilizing stage, we set the angular
velocity reference as zero and provide a hovering height
as the reference trajectory to the drone. Since this is an
equilibrium point, the drone should be able to stabilize around
this hovering point.

B. Flipping Controller

Following [1], a PD-like controller is designed for tracking
the angular velocity from the planner. For simplicity, we
propose a pure PD controller as follows

K(s) = kp + kds (10)

where kp is the proportionality constant of the error term,
and kd is the proportionality constant of the derivative of the
error term. The control effort is calculated using the following
relation

u(t) = kpe(t) + kd
d

dt
e(t) (11)

The PD controller can be tuned to obtain a desired behavior
from the controller by varying the kp and kd terms. This
controller provides the control efforts in the form of three
torques, and a thrust is set as the drone’s weight to maintain
a constant height and not to saturate the actuators.

C. Stabilizing Controller

An LQR controller is designed to re-stabilize the drone after
a complete flip. It is noteworthy that we require a robust
controller because initial errors for this controller can be
significant. LQR controller is a full-state feedback controller
and is designed using the linearized mathematical model of
the quadrotor. An optimization problem is solved to obtain
the gains of the LQR controller. The cost function for the
optimization problem is as follows

J =

∫ ∞

0

(x⊺Qx+ u⊺Ru)dt (12)

Here, x represents the states of the quadrotor, u represents
the control signals, Q is a diagonal matrix that represents the
weights of the states, and R is a diagonal matrix that represents
the weight on each control effort.

The gain matrix K is calculated from the following relation
-

K = R−1B⊺P (13)

where P is the solution of the Riccati equation written below.

A⊺P + PA− PBR−1B⊺P +Q = 0 (14)



Fig. 6: LQR controller architecture.

Once the gain matrix is found, the control effort is calculated
using the following relation

u(t) = −Ke(t) (15)

where e(t) is the error between the reference state and the
actual state (obtained from the Extended Kalman filter) at each
time step.

The controller architecture can be represented from the
Fig. 6.

The LQR controller is tuned by varying the Q and R
matrices to get the desired performance from the controller.

V. SIMULATION

To speed up the process of controller designing and tuning,
we have developed simulation models for both controllers. The
first simulation model developed is for the LQR controller.
This model is developed in MATLAB using the linearized
dynamics model around the hovering point. The Q and R
matrices were tweaked to tune the LQR controller. The per-
formance of this controller is simulated using the nonlinear
dynamics model of the drone with different starting points and
trying to stabilize around the hovering point. The simulation is
done using the ode45 solver at each time step to calculate the
states of the drone. The following Q and R matrices calculate
the gains for the LQR controller.

Q = diag([2000, 2000, 2000, 1000, 1000, 1,

1700, 1700, 1700, 800, 800, 0.5])
(16)

R = diag([1e4, 6e9, 6e9, 1e4]) (17)

The performance upon simulation is represented in Fig. 7.
We can see that most of the states do settle pretty quickly
and some states, mainly x, do not settle fast enough. This
means that there would be some drift in the x direction if this
controller is implemented on the drone.

We see some deviation in performance when using the
controller designed using this simulation on the hardware.
This could be because the system parameters used in these
simulations might not be close to the real parameters.
During our literature review, we came across [7]. During the
initial experimentation, we observed that the model used here
is closer in performance to the actual hardware. This might
be because the system parameters used in this model might
be closer in value to the actual hardware system parameters.
Thus, we decide to switch to this Python-based simulation
environment. One thing to note is that the order of states in

Fig. 7: LQR controller performance in Matlab simulation.

Fig. 8: LQR performance simulation in Python

this model is different from the model we have derived. We
obtain the following gain matrix for the same Q and R matrices
as above.

K⊺ =



0.0 0.0 8e4 0.0
0.0 −8e−4 0.0 0.0
−0.6 0.0 0.0 0.0
0.0 −3.6e−3 0.0 0.0
0.0 0.0 −3.6e−3 0.0
0.0 0.0 0.0 −1.4e−2

0.0 0.0 1.1e−3 0.0
0.0 −1.1e−3 0.0 0.0
−0.5 0.0 0.0 1e−2

0.0 −9e−4 0.0 0.0
0.0 0.0 −9e−4 0.0
0.0 0.0 0.0 −1e−2



(18)

The performance of this controller is represented by the
Fig. 8. We see that the states converge better in this simulation.
This is similar to the performance we see on the hardware.

Simulink is used to simulate the flipping controller. We
have tuned the gains to achieve reasonable trajectory tracking
performance in the flipping stage. Nonlinear dynamics, the
trajectory generator, the stabilizing LQR controller, and the
flipping controller are integrated into this Simulink module
to test the system’s performance for executing single, double,
and triple flips. The Simulink block is represented in Fig. 9,
and the results are represented in Fig. 10, 11, and 12. These
results show that the proposed controllers work very well and
can perform multiple flips successfully.



Fig. 9: Simulink diagram of the entire system.

Fig. 10: Single flip simulation result.

Fig. 11: Double flip simulation result.

Fig. 12: Triple flip simulation result.

Fig. 13: Crazyflie hardware architecture (from Bitcraze)

Fig. 14: Logging of sent and received trajectory. Red and
blue lines represent the sent and received trajectory signals
respectively.

VI. HARDWARE IMPLEMENTATION & TESTING

Our hardware includes the stock Crazyflie drone which
is a quadrotor drone in X-configuration with a size of
92x92x29mm and a weight of 27 grams. The drone has
four DC coreless motors and can generate a max thrust of
60 gms. The drone has two microprocessors; the STM32F4
microprocessor supports the drone’s Autopilot features, and
the nRF51 supports the drone’s communication. The drone has
an inbuilt BMI088 IMU that continuously streams the sensor
measurements to the Autopilot microprocessor. The drone was
augmented with the flow deck from Bitcraze’s expansion deck,
which has a PMW3901 optical flow sensor and a VL53L1x
Range sensor and provides the necessary information for the
relative positioning of the drone for navigation. The overall
hardware architecture of the drone is as shown in Fig. 13.

The flipping planner is implemented within Crazyflie’s
Python-lib environment and communicated with Crazyflie via
the Crazyradio at 75-155Hz. We have two variants of the flip-
ping planner; the open-loop planner uses the time to determine
trajectory stages, while the closed-loop planner takes in the
drone’s accumulated roll angle as feedback, calculates the next
waypoint, and transmits it continuously to the drone while
flipping. We tested the open-loop planner first because the
duration of each planning stage can be precomputed. However,
the risk is that only small timing errors could make the flip
maneuver unsuccessful. Fig. 14 shows the trajectory from
the base station and from the quadrotor. Although the signal



Fig. 15: Cascaded PID architecture (credits Bitcraze).

Fig. 16: The performance of the flipping controllers. The blue
dotted line is tracking the red one. When the attitude rate PID
is tuned, there is no overshoot anymore.

is well received, there is an amount of delay due to radio
communication. Therefore, we have to forward the trajectory
to compensate for that delay in software.

For the flipping controller to track the trajectory, we leverage
the 500Hz attitude rate portion of the inbuilt cascaded PID (see
Fig. 15) as its gains could be easily tuned to behave as the
controller in [1], which basically have the same property as a
PD controller (see Fig. 16). We need to change the PID from
angle mode to rate mode to enable this function. Now, the
input for that block is the flipping rate command sent from our
planner at the base station. We also switch off the supervisory
check for tumble detection during the flip period to ensure
the motors keep working throughout the execution of the flip.
This is done by modifying the firmware to receive commands
through the Python API to enable and disable the supervisory
check as needed. Similar modifications are also made to enable
sending controller gains to the Crazyflie through Python API.

As for the LQR controller, it takes in all the 12 drone states
from the inbuilt Extended Kalman Filter as input and produces
the motor commands as output. The resulting thrust and body
torques are mapped to motor commands as follows:

f
τ1
τ2
τ3

 =


kf kf kf kf

−kfd −kfd kfd kfd
kfd −kfd −kfd kfd
−km km −km km



ω̃1
i

ω̃2
i

ω̃3
i

ω̃4
i

 (19)

Based on [7], we obtain the thrust coefficient kf =
1.8221e−6 N per PWM unit, and drag coefficient km =
4.4733e−8 Nm per PWM unit, and distance from each motor
to CoM d = 0.046 m with ω̃2

i is the percentage of maximum
angular velocity represented as a 16-bit integer and act as the

motor commands. This LQR controller is implemented directly
in firmware at a sampling rate of 500Hz.

We conduct both our flipping and stabilizing tests in indoor
environments with abundant light to avoid wind disturbances
and to ensure state estimates from our flow deck are as
accurate as possible we ensured that the drone flew above a
feature-rich surface. Hover tests under controlled disturbances
qualitatively assess the performance of stabilizing controller.
We log the drone states continuously during flipping and use it
to assess accuracy in tracking the flip trajectory of our flipping
controller.

A simplified flipping procedure is depicted as follows
1) Initialize Kalman filter and stabilizing controller
2) Hover at h (m)
3) Ascend in tasc seconds
4) Turn off tumble check, switch to the attitude rate con-

troller
5) Send and track reference until reaching time/angle
6) Turn on tumble check, switch to stabilizing controller
7) Stabilize then land

VII. DEMO RESULTS

This section describes our demo results for hovering the
LQR controller and flipping maneuver. While several plots
are shown and analyzed, the links to videos are provided.

A. LQR Controller Results

Fig. 17: Hovering LQR controller results. x-axis presents
sample counts, the y-axis represents meters and radians. The
x-y position is drifting slightly due to lower weights and
state estimation. Roll and pitch converge to equilibrium values
quickly under no disturbances.

Fig. 18: Hovering LQR controller results under disturbances.
x-axis presents sample counts, the y-axis represents meters
and radians. Under disturbances, the controller still keeps the
drone’s position and orientation near the equilibrium point.
Check our demo video.

https://www.youtube.com/watch?v=81XYgRthhc0


Firstly, the LQR controller is tested for hovering at a
constant height of 0.5 m. Later, some disturbances are created
by waving a notebook toward the drone to verify its robustness.
The position x-y and orientation roll-pitch of the drone while
hovering are logged and shown as in Fig. 17 and 18. As
can be seen from Fig. 17, our LQR controller can stabilize
both position and attitude of the drone. However, the position
drifted slightly due to its lower weight compared to attitude
and sensitivity to state errors. In Fig. 18, with the same
hovering setup, some disturbances that mimic natural winds
are introduced. Due to this effect, there are some deviations
in the states, but the drone’s stability is still maintained by the
LQR controller. This shows that our LQR design is robust and
ready to be integrated into the flipping pipeline as a stabilizing
controller.

B. Flipping Maneuver Results

There are several testing cases for flipping maneuvers
depending on open-loop vs. closed-loop planner, not tuned vs.
tuned attitude rate PID, and PID vs. LQR stabilizer. Single flip
is tested first with detailed analysis before moving to the more
challenging cases. The simplified procedure in VI is performed
for each case, with the main program being executed using
Python API.

Fig. 19, 20 and 21 show the demo results for a successful
single flip maneuver in which open-loop planner and PID
stabilizer are used, and attitude rate PID is not tuned. In Fig. 19
(see the video for a better experience), eight samples of the
flipping procedure are shown subsequently, strictly following
the simplified procedure in VI.

Fig. 20 looks at the details when the flipping controller is
active. There are definitely significant delays from base station
to drone and from command to response. Because the attitude
rate PID is the default one, it has some overshoot and reaches
approximately 500 deg/s instead of zero at the end of the
stage. Because the roll angle is directly logged and plotted, it
has a jump from 180 to -180 degree and then go to near zero,
which intuitively represents a continuous increase from zero
to 180 and to almost 360 degrees at the end. This figure gives
us the intuition that for successful stabilization after flipping,
the terminal angular rate should be less than 500 deg/s and
the angle should be less than 20 degrees. it is noteworthy that
this only applies to the default cascaded PID which has quite
robust performance.

In Fig. 21, the entire flipping process is logged and pre-
sented for 3.5 seconds in which the flipping controller is active
for about 0.5 seconds. It takes approximately 0.6 seconds to
stabilize after the flip using the default PID controller, much
faster compared to 1.6 seconds from [1] but definitely not as
good as our simulation results. Unfortunately, the majority of
the open-loop tests witness failures in which the quadrotor
cannot maintain stability after flipping.

Many modifications and improvements are made during
the testing process including tuning the attitude rate PID
and cascaded PID, adjusting the hovering height and thrust

setpoint, modifying the switching time and trajectory phases,
etc.

Instead of the stock PID, the LQR controller is integrated
into the flipping pipeline for the re-stabilization phase. It is
worth noting that the open-loop planner is still used till this
experiment. However, the LQR controller cannot re-stabilize
the quadrotor after the flip. We also tested pitch-axis and
multiple flipping maneuvers but they are not successful.

Last but not least, the closed-loop planner is implemented
and tweaked from Python API. By using a feedback signal
from accumulated roll angle, the switching time and trajectory
stages are now decided in a better fashion. The conditions for
re-stabilization are all good and promising but more time is
needed to provide further results.

These failures will be analyzed in the next section.

C. Failure Analysis

Fig. 22 shows that the open-loop planner often fails due
to incorrect timings. Switching to stabilizer is planned at
0.5 seconds but the actual roll angle and roll rate have
not been close to zeros. This makes it challenging for the
stabilizing controller to recover at that large initial error. With
the tuned flipping controller, the angle response is slower and
the switch happens at just 260 degrees. These results highlight
the importance of a closed-loop planner, which uses roll angle
feedback to decide trajectory stages and switching time.

As for the LQR controller, Fig. 21 shows that even when
the conditions at the switching instance (0.5 seconds) are
good, it still cannot re-stabilize the quadrotor after flipping.
It is obvious that our LQR design is not good enough for
this application. Our LQR controller, which takes full 12-state
feedback and outputs the control signals directly at 500 Hz, is
sensitive to measurement noises. Another working approach is
to run LQR at only 50 Hz and use a motion capture system for
accurate state measurements. Moreover, LQRs for lower-level
control with 8 or 6 states are derived as well and proved to
have robust performance.

Pitch-axis flipping behavior turns out different from the roll-
axis one due to the asymmetric configuration of the quadrotor.
The angle response is faster, which means the quadrotor rotates
more than 360 degrees during 0.5 seconds. Therefore, more
modifications in the planner are required to make it work.
As the single flip maneuver is not consistent, multiple flips
are simply not possible to this end. But it is certain that the
quadrotor can still track the reference to some extent.

As the close-loop planner is introduced, the flipping phase
is well executed. The roll angle and rate are consistently
close to zeros at the switching time. However, the results
are still not as expected but very promising. Notice that the
fragility and inconsistency of this 19-gram quadrotor is also a
huge challenge for our application. A simulation in Simulink
reproduces the effect of time delay communication between
the off-board planner, and the on-board microprocessor is
made. As a time delay of 0.05 seconds is injected, the re-
stabilization phase is negatively affected. It would be even



(a) Hovering at h m (b) Ascending and trigger flip (c) At 45 degrees (d) At 135 degrees

(e) At 180 degrees (f) At 225 degrees (g) At 340 degrees, switch (h) Stabilize and land

Fig. 19: Eight samples of our flipping maneuver from this demo video.

Fig. 20: Experimental results while the flipping controller is
active. The x-axis presents time (approximately 0.5 seconds
for a single flip), and the y-axis represents degrees and
degrees/second. Yellow and red lines are calculated/sent and
received reference trajectory. The Blue dotted line is the
measured angular velocity trajectory which is tracking the red
one. The black line represents 10 times roll angle with a jump
being accumulated angle from 180 to 360 degrees.

worse with real hardware, which explains why all modules
should be embedded in the on-board microprocessor.

VIII. CONCLUSIONS

This work has provided a complete flipping maneuver
pipeline which is very challenging for a micro quadrotor’s
acrobatic application. Our approach divides the process into

Fig. 21: Experimental results of the entire flipping maneuver.
The x-axis presents time, the y-axis represents degrees and
degrees/second. Yellow is calculated/sent reference trajectory.
The Blue dotted line is the measured angular velocity trajec-
tory. The black line represents 10 times roll angle which is
completely stable after 1.6 seconds.

three steps: ascent, flipping and re-stabilization. Following
that, we developed a flipping planner, a flipping controller,
and a stabilizing controller. An open-loop flipping planner
will generate a three-stage attitude rate reference based on
time, compared to the generalized flipping angle feedback of
a closed-loop one. This planner must consider the limited
sensing and actuating capacity of the quadrotor. To track
that reference, we use a flipping controller, which has a PD-

https://www.youtube.com/watch?v=y1OanjJ8mtQ


(a) Normal test (b) Tuned attitude rate PID

Fig. 22: Experimental failure due to incorrect timings of open-
loop planner. Labels are as in Fig 21. With the planned switch
at 0.5 seconds, the actual angle and rate are far from zeros,
making it impossible for the default PID stabilizer. Even when
the attitude rate PID is tuned, the angle response is slower.

Fig. 23: Experimental failure due to LQR stabilizer. Labels
are as in Fig 21. Although the condition at the switch (0.5
seconds) is good, the LQR stabilizer is not successful.

like architecture, then switch to a regular controller after
completing a flip. For that re-stabilization phase, both cascaded
PID and LQR controllers are considered. These modules are
implemented via Python API as well as directly Crazyflie
firmware. Finally, this paper has detailed experimental testing
and demonstrated successful flip maneuvers. However, the
majority of the tests witness failures due to many different
factors, including communication delay, open-loop drawbacks,
and not-robust-enough LQR controllers.

Many modifications to the current pipeline can be made to
improve the performance in the future. Firstly, the closed-loop
planner, which needs more integration tests, has provided the
stabilizing controller with good initial conditions. Secondly,
all modules should be directly implemented in the on-board
microprocessor, which will significantly help with the delay

Fig. 24: Delay effect simulation. A delay of 0.05 seconds is
added to the communication between the planner and con-
troller. This significantly worsens the re-stabilization phase.

problem. Last but not least, more accurate state measurements
and different architectures can boost the LQR stabilizer’s
robustness and overall performance.
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[1] Y. Chen and N. O. Pérez-Arancibia, “Generation and real-time imple-
mentation of high-speed controlled maneuvers using an autonomous 19-
gram quadrotor,” in 2016 IEEE International Conference on Robotics and
Automation (ICRA), 2016, pp. 3204–3211.

[2] J. H. Gillula, H. Huang, M. P. Vitus, and C. J. Tomlin, “Design of
guaranteed safe maneuvers using reachable sets: Autonomous quadrotor
aerobatics in theory and practice,” in 2010 IEEE International Conference
on Robotics and Automation, 2010, pp. 1649–1654.

[3] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation and con-
trol for precise aggressive maneuvers with quadrotors,” The International
Journal of Robotics Research, vol. 31, no. 5, pp. 664–674, 2012.

[4] E. Kaufmann, A. Loquercio, R. Ranftl, M. Mueller, V. Koltun, and
D. Scaramuzza, “Deep drone acrobatics,” 07 2020.

[5] R. W. Beard, “Quadrotor dynamics and control,” Brigham Young Univer-
sity, vol. 19, no. 3, pp. 46–56, 2008.

[6] J. Förster, “System identification of the crazyflie 2.0 nano quadrocopter,”
B.S. thesis, ETH Zurich, 2015.

[7] A. Majumdar, “Introduction to robotics.”


	Introduction
	Literature Review
	System Modeling
	Quadrotor Dynamics
	Linearized Model

	Controller Design
	Flipping Trajectory Planner
	Flipping Controller
	Stabilizing Controller

	Simulation
	Hardware Implementation & Testing
	Demo Results
	LQR Controller Results
	Flipping Maneuver Results
	Failure Analysis

	Conclusions
	References

