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 SUMMARY 

This article proposes a complete control structure including formation control and 

adaptive reinforcement learning (ARL) algorithm for multiagent system of surface vessels 

(SVs). The ARL strategy is established for each SV to process non-autonomous system 

without solving Hamilton-Jacobi-Bellman (HJB) equation. The additional formation 

controller is implemented to complete control structure of multiple SV systems and to 

guarantee the formation tracking problem. Simulation studies are developed to show the 

performance of proposed control structure.. 

 Keywords: adaptive reinforcement learning, surface vessel, actor-critic algorithm, 

formation control, multiagent systems. 
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I. INTRODUCTION 

Surface Vessel (SV) systems are the special case of robotic systems and we can 

absolutely utilize the control structures in general robotics in considering control design of 

SVs. Recent years have witnessed the control design development for surface vessel (SV) 

systems with dynamic uncertainties and external disturbances [1-11]. Among numerous 

approaches to enhance robust adaptive controllers, the model of SV systems can be 

considered in two cases involving the under-actuated systems [1-4] and fully-actuated systems 

[5-10]. There is a similarity between under-actuated SV systems and a typical class of 

nonholonomic system, such as a wheeled mobile robotic (WMR) system [12]. Thus, model 

separation technique in control law of [12] can be utilized for a class of underactuated SV 

systems. However, it can be seen that, in contrast to the under-actuator WMRs, the kinematic 

subsystem and dynamic sub-system are fully-actuated and under-actuated, respectively. 

Therefore, this means that the control design in [1-3] does not utilize the transformation 

matrix to be introduced in [12]. Authors in [1] developed an output feedback control scheme 

with a neural network based adaptive observer. Additionally, due to the model separation 

technique, the control scheme was investigated by backstepping method based on considering 

the additional dynamic term in handling the actuator saturation and observer [1]. In [2], 

because of the description of under-actuated systems, the coordinate transformations was 

considered to separate the surface vessel into two subsystems including rotational and 

translational subsystems. The control law of Yaw and Surge are dealt with rotational and 

translational subsystems, respectively. Moreover, the authors in [2][developed the stability 

analysis for cascade system with finite-time uncertainty observer. This method is extended in 

control structure [3] with the situation of full state regulation control. The backstepping 

technique for under-actuated model was implemented sequentially from kinematic model to 

dynamic subsystem with transformation being mentioned [4,11]. Furthermore, the proposed 

controller is able to handle input saturation constraint using the smooth bounded function [4]. 

Regarding fully-actuated SV systems, the control design of uncertain systems has 

become considerably challenging in relation to input, full-state constraints, finite time [5-10]. 

To tackle these challenges, the backstepping based robust adaptive control scheme and barrier 

Lyapunov function (BLF) have been cleverly combined to obtain the appropriate controllers 

[5-9]. In [5], although the cascade control system is also considered in the situation of fully-

actuated SVs, but it is obviously different from the existing methods in [1], the tan-BLF 

technique addressed the error constraint and finite time control problem. In [10], the control 

design can be investigated with non-singular fast terminal SMC technique for whole systems 

without using Backstepping technique for subsystems. This is in contrast to classical 

Backstepping technique for SVs to be introduced in [5-9]. Additionally, the finite time 

disturbance observer is also inserted to guarantee the finite-time reachability of the sliding 

surface [10]. On the other hand, when the state trajectories of closed system is located on the 

sliding surface, the finite-time tracking problem can be satisfied under the description of non-

singular fast terminal of this sliding surface [10]. In [8] and [9], the integral sliding surface is 

mentioned to obtain the sliding mode control (SMC) strategy combining with NN being 

employed to approximate the uncertainty term as well as the backstepping method is also 

handled for designing the controller. For fixed-time tracking control scheme, many efforts 

have been made in the recent time, such as the controllers in [6,7] are designed by using the 

framework of exponential function based controller and a fixed-time extended state observer. 

Moreover, the fixed-time convergence can be achieved under the estimation of the appropriate 

Lyapunov function and the lemma of Polyakov [7-13]. In comparison with [6], the proposed 

SMC scheme in [7] is extended for sensor fault diagnosis. However, the fixed-time controllers 

presented in 6] and [7] are disadvantageous for underactuated systems and uncertain matrix 
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M. A new structural reliability based matrix for fully-actuated systems is presented in [14] to 

lead the computational complexity of controller. Additionally, similar to [15], the controller is 

added more the term Nussbaum-type function to deal with the unknown coefficient sign. The 

backstepping method is absolutely extended with the disturbance observer (DO) using signum 

function for control design of multiple dynamic positioning vessels with the auxiliary term to 

cope with input constraint [16]. It is similar to the work in [15,16], the challenges of input 

saturation and state constraint have been tackled by the framework of BLF, additional 

dynamic term and Nussbaum-type function [17]. The control designs in [13,18,19] are 

implemented by the same control structure but the work in [13] is extended with fixed-time 

control based on the theorem by Polyakov about fixed-time stability for DO design of external 

disturbances and the trajectory tracking control is established by fixed-time command filter 

for backstepping method. Authors in [19] handle more the description of the unknown 

parameters with exponential convergence. 

Different from the classical solution dealing with the full state constraints, input 

saturation via additional dynamic term, barrier Lyapunov function [15-17], the optimal 

control scheme can handle by solving the constrained optimal problem. However, under the 

mathematical viewpoint, finding an optimal controller is equivalent to solving the nonlinear 

partial differential equation Hamilton–Jacobi–Bellman (HJB) equation, which is difficult to 

obtain a global analytic solution. Therefore, many adaptive/approximate Reinforcement 

Learning (ARL) based recent investigations have focused on the approximate optimal 

methods instead of the accurate optimal ones. The main technique of ARL can be known as 

the iterative method, which has been extended to many approaches, such as Actor/Critic 

technique [20-22], off-policy based integral reinforcement learning (IRL) [23-25], Q learning 

method [26,27}, etc. The optimal control input can be computed by simultaneously training of 

both Actor NN and Critic NN. Moreover, the disadvantages of actuator saturation and 

external disturbances can be solved by modified performance index [21]. The Q learning 

method is established using Q function being a function of both the state variable and control 

input. Based on the relation between Bellman function and Q function, the optimal controller 

can be achieved in the case of dynamic uncertainties. The IRL method in [23, 25] is 

implemented by the consideration of integration on an interval combining with data collection 

to compute optimal control. This method is able to cope with dynamic uncertainties via off-

policy technique [23-25]. In [24], thanks to the performance index being not classical 

quadratic form, the critic NN, which only depend on temporal difference error, can be found 

without using Halminton function. Additionally, in the step that computing Actor NN from 

Critic NN, this method can eliminate the influence of control input by Nussabaum function 

[24]. A different approach of ARL technique in designing for unknown dynamic can be 

regarded using identifier [22,28-31]. It can be seen that the control methods can be generally 

categorized into two main groups, including classical nonlinear control techniques and 

optimal control approaches. 

Today, the problem of controlling the multi-object cooperative system is studied 

widely in the field of control and automation. In many applications, it is interested in the 

synchronization of objects to achieve combined goals [34-37]. The problem of many 

cooperative objects takes the form of objects following the leading audience (Leader-

Follower), the distributed herd (Distributed Swarms) or synchronizing squad. In those studies, 

graph theory was used as background knowledge to design the communication diagram of a 

cooperated multi-object system, which includes multiple nodes and branch links [38-40]. The 

system at each node in the graph is a linear system [41,42] or nonlinear system [30,40]. Based 

on the approximate probability, NN is used to design adaptive collaborative controllers 

[40,43-45]. In [40], Distributed NN is used to design a cooperative input feedback control 
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algorithm output for many nonlinear systems with a dynamic component that lacks specific 

information. In [43,45] algorithm for sustainable adaptive control based on NN is designed for 

many nonlinear systems that follow the trajectory of the leading subject with blocked grip 

error. In [44], the NN based adaptive control algorithm is designed for many collaborative 

nonlinear systems using linearization techniques. Most of the aforementioned algorithms do 

not minimum any quality index function so they are not considered to be the optimal control 

algorithms. Combining the properties of the thing Adaptive and optimal control for the 

cooperative control problem is essential. However, here is a complex and challenging 

problem. On the other hand, multi-agent systems have been mentioned by many approaches 

[46-50]. In [48], the distributed control for multiagent systems was presented with the 

consideration of Kronecker product, Neural Networks, Linear Matrix Inequalities (LMIs). 

Moreover, LQR optimal control was developed for multi-agent systems [47]. However, 

almost previous control designs for multi-agent systems have considered each agent in easy 

cases of linear systems, sub-systems [46-50]. Additionally, optimal solutions for multiagent 

systems have not mentioned the obstacle in solving HJB equation [46-50]. The ARL 

algorithm shows the efficiency in computational costs and storage resources to speed 

convergence. Extending the ARL to the problem of controlling multi-object collaboration is 

necessary. 

Motivated by the above works and consideration from traditional nonlinear control 

scheme to optimal control strategy for multi-agent systems, the work focuses on the 

combination of these two control direction with main contribution being listed in the 

following: 

1. The proposed ARL based control scheme can achieve simplicity in calculation in 

compare with the existing papers [20,32,33]. The fact is that the proposed cascade 

control design is only realized ARL algorithm in dynamic sub-system control loop. 

Furthermore, the proposed method is able to carry out for autonomous systems 

with a smaller number of state variables despite of the nonautonomous property of 

closed systems under time-varying reference trajectory. 

2. This paper proposed the control structure being the frame of formation control for 

generating the reference and ARL based optimal control for each SV. The 

proposed algorithm is able to obtain the tracking of formation, trajectory tracking 

control and the unification of optimality problem and stability. 

The remaining parts are summarized as follows. The mathematical model of SV 

systems and control objective, the proposed ARL control scheme and theoretical analysis are 

shown in Section 2.1 and Section 2.2 respectively. Graph theory and formation control are 

presented in Section 2.3. Overall control structure of SV formation is summarized in Section 

2.4. Section 2.5 verify the proposed control approach by numerical simulation. 
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II. RESEARCH OUTPUT 

2.1 SURFACE VESSELS MODEL 

This section presents the model and the mathematical definition of the tracking control 

problem for SV systems. Ignoring the motion in heaven, roll and pitch axes, one can only 

consider the mathematical model of SVs in the case of three degree-of-freedom (3DOF). This 

allows us to model the SV with the dynamic equation given in a matrix form. 

( ) ( )

( ) ( ) ( ) ( ) ( , )

J v t

M v C v v D v v g v

 

   

=

+ + + = +
      (1) 

where the vector 3[ , , ]Tx y =   includes the planar position ( , )x y  and heading 

angle   in the earth-fixed frame. 3[ , , ]Tv u r=   represents the corresponding linear 

velocities with surge, sway velocities and yaw in the body-fixed frame of SV systems; and 
3   is the control input vector. The rotation matrix ( )J   is represented in the following 

matrix 

cos( ) sin( ) 0

( ) sin( ) cos( ) 0

0 0 1

J

 

  

− 
 

=
 
  

       (2) 

the inertial matrix of system 

0 0

0

0

u

v g r

g v z r

m X

M m Y mx Y

mx N I N

 −
 

= − − 
 − − 

                   (3) 

the Coriolis matrix 

0 0 ( ) ( )

( ) 0 0 ( )

( ) ( ) ( ) 0

v g r

u

v g r u

m Y v mx Y r

C v m X u

m Y v mX Y r m X u

 − − − −
 

= − 
 − + − − − 

  (4) 

The hydrodynamic reduction matrix: 

| |

| | | | | | | |

| | | | | | | |

( ) ( )

0 0

0

0

| | 0 0

( ) 0 | | | | | | | |

0 | | | | | | | |

n

u

v r

v r

u u

n v v r v v r r r

v v r v v r r r

D v D D v

X

D Y Y

N N

X u

D v Y v Y r Y v Y r

N v N r N v N r

= +

− 
 

= − −
 
 − − 

 −
 

= − − − − 
 − − − − 

   (5) 

( )g   is a vector of thrust and gravity, a ship with three degrees of freedom can be 

considered as ( ) 0g  = . However, noise from the environment can be affected to tilt the ship, 

then force and thrust will appear to bring the ship back into position balance. Therefore, there 

is no loss of generality while in formula (1) remains with component ( )g  . 

The system (1) has the following characteristics: 
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1. 0TM M−   

2. ( ) ( )TC v C v= −          (6) 

3. ( ) 0D v   

4. ( )J   is the matrix that revolves around axis Z and 1( ) ( )TJ J − =  

Assumption 1: The term of uncertainties and disturbances ( , )v  in (1) is bounded as 

( , )v             (7) 

where   is a known constant. 

In this context, the control objective is to implement an ARL-based trajectory tracking 

cascade control scheme of surface vessel (1) suffering from the term of uncertainties and 

disturbances ( , )v  and then formation trajectory generator. 

It can be seen that Assumption 1 is reasonable as analyzed in [8]. However, compared 

with the corresponding assumption in [8], this work has an advantage in that it is able to 

eliminate the condition of bound of its derivative ( , )
d

v
dt

 . Unlike previous approaches in 

[1] - [19], the control objective not only requires trajectory tracking but also guarantees 

optimal control problem. Due to the challenge of directly implementing the optimal control 

design, this paper develops the ARL based trajectory tracking cascade controller in next 

sections. Furthermore, in contrast to the control objective in [20], this work allows us to deal 

with uncertainties and disturbances ( , )v  in SV systems (1). 

2.2 ADAPTIVE REINFORCEMENT LEARNING CONTROL STRATEGY 

 

Figure 1 Cascade control structure for each Surface Vessel 

Since the optimal controller will be utilized according to the dynamic subsystem, it 

thus is reasonable to establish the cascade control system as represented in Figure 1. First, the 

kinematic control law computes the desired velocities vector for inner control loop. Second, 

the dynamic controller is the frame of optimal controller and feed forward term. Additionally, 

due to the difficulties in handling the optimal control algorithm, the ARL strategy is 

considered with actor-critic structure. After that, the stability of whole surface vessels is 

determined by using Lyapunov stability theory without traditional backstepping technique. 

2.2.1 Control Law and Feed Forward Design 

For the kinematic sub-system ( )J v =  in a SV (1) ,the kinematic controller can be 

designed as 

1( , ) ( )( )d d dv z J z     −= −        (8) 
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where   is a positive definite matrix. Due to the purpose of utilizing the ARL 

algorithm, it is necessary to obtain the autonomous systems via feed-forward controller. The 

proposed ADP-based controller for dynamic subsystem in Figure 1 is structured by not only 

the optimal control input but also the feed-forward term as follows 

du = +           (9) 

where the feed-forward term is chosen for the purpose of obtaining the autonomous 

systems Figure 1 in the development of ARL algorithm. 

( ) ( ) ( ) ( )d d d d d dM v v C v v D v v g = + + +       (10) 

One can replace the control law (9) and (10) into (1) to achieve the dynamic equation 

with ( )u t  being satisfied the following differential equation: 

1 1 1 1

, ,

1

( ( )) ( ( ))

( ) 0 0 ( , )

( ) 0 0

( ) ( )( ( , ))

v d d d d

d v

d

M l z v z n M l v z n M M

X J z z z u v

h

F X G X u v

 

    





− − − −     − + +
     

= + − + +      
     
     

= + + 

  (11) 

where 

( )1 ( , )

[ , , ]

( ) ( ) ( )

v d d

T T T T

v d

l l z v z

X z z

l x C x x D x x









= +

=

= +

         (12) 

Remark 1: Thanks to the squared rotation matrix (2) in model (1), the kinematic 

controller is designed without using the transformation matrix in [12]. Additionally, it should 

be emphasized that the combination of kinematic controller (8), feedforward control law (10) 

and considering a new state variable (12) is able to obtain the autonomous systems (11). 

Hence, this proposed method plays an important role in developing optimal control design in 

next sections. In addition, though the control method of using a Moore-Penrose pseudo 

inverse matrix proposed in [33] also implement for autonomous systems, an important 

difference between this paper and [33] is that the number of state variables (12) in equivalent 

autonomous model (11) is 9, while the completed model in [33] used the state variables vector 

with 12 elements. Therefore, it leads to the distinction in handling ARL based optimal control 

algorithm in next sections. 

2.2.2 Actor-Critic Architecture based Control Scheme 

In this section, based on Actor-Critic structure, we aim to establish ARL control 

scheme for the dynamic subsystem of the surface vessel. 

a) Optimal Control Problem 

In this paper, one consider the finite horizon integral performance index associated 

with (1) as 

0

( , ) ( ( ), ( ))J X u r X u d  


=          (13) 

where ( ( ), ( )) T Tr X u X QX u Ru  = +  and the user defined weighting matrices 

0TQ Q=   and 0TR R=   with appropriate dimensions. It should be noted that the optimal 
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problem for surface vessel (11) is to design an admissible control policy [34] obtaining the 

minimal cost. The fact is that the state feedback control policy ˆ( )u X  guarantees the existence 

of solution of estimated Bellman function ˆ ( )V X  in HJB equation, which will be analyzed in 

next sections. 

Definition 1: A control scheme ( )u X  is defined to be admissible in term of the 

performance index (13) on a compact set  , known as continuous signal ( ) ( )u X    if it 

satisfies not only the stabilization of  (11) but also the limitation of ( , )J X u  for every X Q . 

It should be noted that, in general case of nonautonomous systems, the optimal state 

feedback control law needs to be given as a time-varying function *( , )u X t  . However, thanks 

to the advantage of the framework of kinematic controller, feed-forward term and state 

variables selection, one obtain an autonomous system (11). Hence, the optimal control input is 

also determined as a time-invariant function *( )u X  and the Bellman function with respect to 

arbitrary time *( ( ))V X t  can be known as *

( ) ( )
( ( )) min ( ( ), ( ))

u X
V X t J X t u t

 
= . Taking the time 

derivative of *( ( ))V X t  by using two different methods. First, one can compute directly as 

* *
* *( ( )) ( ( ) ( ) )

d V dX V
V X t F X G X u

dt X dt X

 
= = +
 

$     (14) 

Second, thanks to the Dynamic Programming Law, one also obtain the derivative of 
*( ( ))V X t  as follows 

* *( ( )) ( ( ), ( ))
d

V X t r X u
dt

 = −        (15) 

According to (14) and (15) one obtain that 

*
* *( ( ), ( )) ( ( ) ( ) ) 0

V
r X u F X G X u

X
 


+ + =


      (16) 

Additionally, one have the cost function formulated as 

* *

( ) ( )

* *

( ) ( ) ( ) ( )

( ( )) min ( ( ), ( ))

min ( , ) min ( , )

u X
t

t t

u X u X
t t t

V X t r X u d

r X u d r X u d

  

 



 

+ 

   
+

=

= +



 

     (17)

 Because of Dynamic programming principle, it leads to 

* * *

( ) ( )
( ( )) min ( , ) ( ( ))

t t

u X
t

V X t r X u d V X t t
+

 
= + +      (18) 

This Bellman function can be rewritten as 

* *

( ) ( )

1 ( ) ( )
min ( , ) 0

t t

u X
t

V t V t
r X u d

t t


+

 

 + − 
+ = 

   
      (19) 

As the convergence of 0t + → , one can derive that 
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*

( ) ( )
min ( ( ), ( )) ( ( ) ( ) ) 0

u X

V
r X u F X G X u

X
 

 

 
+ + = 
 

     (20) 

Remark 2: It is worth noting that in general case of the time-varying control policy 

and Bellman function *( ( ), )V X t t , the equation (16) is modified with the right side being 

*( ( ), )V X t t
t




. On the other hand, due to the time-varying desired trajectory ( )d t , the closed 

systems need to be considered as a non-autonomous system. In order to overcome this 

challenge, the proposed method in [35] developed the solutions of ARL based time-varying 

optimal controller using the combination of data collection and function approximation 

technique under Newton-Leibniz formula. However, the proposed algorithm in [35] is more 

complicated as handling for the term *( ( ), )V X t t
t




. It is worth noting that the advantage of 

the proposed method is that one only need to deal with optimal control problem for an 

autonomous system (11) using the framework of kinematic controller (8), feed-forward (10) 

and a new state variables vector (12) 

b) ADP-based Control Design 

It is worth emphasizing that, due to the nonlinear property of HJB equation (16) , it is 

hard or impossible to solve analytically for obtaining the optimal controller. Hence, a Neural 

Networks (NN) based approximation method is utilized to develop the ARL algorithm in 

control design of SVs. As we all known, since the Bellman function *( )V X  and optimal 

control input *( )u X  can be considered smooth functions of the state X, they are represented 

over any compact domain 
9C   

*( ) W ( ) ( )TV x x x = +         (21) 

* 11 ( ) ( )
( ) ( )( )

2

T T
T x x

u x R G x W
x x

 −  
= − +

 
      (22) 

where W N  is a vector of unknown ideal NN weights, N  is the number of neurons 

of the proposed Neural Network, ( ) NX   is a smooth NN activation function vector with  

(0) 0j =  and 0| 0 1,..., , ( )
j N

x j N X
x


=


=  = 


 is the reconstruction error of the Bellman 

function *( )V X . It is because of uncertain ideal NN weights, one need to find appropriate 

updating laws W ,Wa c  with the purpose of approximating the actor/critic parts and obtaining 

the optimal controller without solving analytically the HJB equation (more details see [22]). 

In addition, the smooth NN activation function vector ( ) NX   is chosen based on the 

description of SVs (see Section 2.1). In [22], the Weierstrass approximation theorem is able to 

uniformly approximate not only *( )V X  but also 
*( )V X

X




 with 

( )
( ),( ) 0

x
x

x





→


 as N → . 

For a fix number N, the estimated Bellman function of critic part ˆ ( )V X  and the estimated 

optimal control policy of actor part ˆ( )u X  are employed to approximate the Bellman function 

and the optimal control input as 

ˆ ˆ( ) ( )T

cV X W X=           (23) 
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11 ˆˆ( ) ( )( )
2

T T

cu X R G X W
x

− 
= −


       (24) 

To this step of analysis, based on the properties (16), (20) of Hamiltonian 

( , , ) ( ( ), ( )) ( ( ) ( ) )
V V

H X u r X u F X G X u
X X

 
 

= + +
 

 under the optimal control input *( )u X  

and associated value function *( )V X , the adaptation laws of critic ˆ
aW , ˆ

cW  weights are 

simultaneously trained to minimize the squared Bellman error hjb  and the corresponding 

integral, respectively. Due to the error between estimated functions ˆ ( )V X , ˆ( )u X  and optimal 

results *( )V X , *( )u X  the Bellman error hjb  can be computed as 

*
* *

ˆ
ˆ ˆ( , , ) ( , , )

1 1ˆ ˆ ˆ ˆ( , )
2 2

hjb

T T T

c

V V
H X u H X u

X X

W X u X QX u Ru





 
= −

 

= + +

      (25) 

where ˆ ˆ( , ) ( ( ) ( ) )X u F X G X u
X




= +


 is the regression vector of critic part.  

Similar to the work in [22], the adaptation law of Critic weights is given 

ˆ
1

c c hjbT

d
W k

dt v


 

 
= −

+
        (26) 

where , cv k   are constant positive gains, and ( ) N Nt   is a estimated symmetric 

gain matrix obtained from the differential equation as 

0; ( ) (0)
1

T

c sT

d
k t I

dt v


     



+= − = =
+

     (27) 

where st
+  is resetting time satisfying the property of eigenvalue 

min 1 0 1{ ( )} , 0t       . In [22], to ensure ( )t  is positive definite and prevent the 

covariance wind-up problem, the covariance matrix ( )t  can be satisfied as 

1 0( )I t I            (28) 

In addition, the adaptation law of actor NN part is proposed using the minimization of 

squared Bellman error. 

11
2

ˆ ˆ ˆ ˆ ˆ( ) ( )
1

T

Ta
a a c hjb a a c

T

kd
W GR G W W k W W

dt X X


 

− 
= − − − −

 +
   (29) 

Remark 3: It can be seen that many ARL based optimal control methods have been 

investigated, such as off-policy Integral Reinforcement Learning [23, 25], Q Learning [27], 

etc. Compared with the work of off-policy IRL [23, 25], the control design (23), (24), (26), 

(29) is only based on the instantaneous time instead of considering the time interval to collect 

data in finding the optimal controller. Moreover, the learning method is simultaneously 

trained, being different from sequentially implemented in [23, 25]. The fact is that this paper 

utilized the property of HJB equation (16), while off-policy IRL method considered the 

deviation of integrals at two sampling time by dynamic programming principle [24, 25]. The 

Q Learning method establishes the Q-function with respect to both state variables and control 
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inputs, containing Bellman function and performance index [27]. Therefore, the Q-learning 

technique is appropriate for discrete time systems and it is hard to implement Q-learning for 

continuous time systems as in this work. 

c) Convergence and Stability Analysis 

It is necessary to utilize several following assumptions in considering the stability and 

tracking problem of proposed algorithm [22]. 

Assumption 2: The matrix ( )G X  in (11) is known and bounded, it means that there 

exists a known positive constant G , such that 0 ( )G X G  . 

According to (21), (22), (23), (24), (25) the Bellman error hjb  is also described by a 

function of state variables vector ( )X t  as: 

* * * *ˆ ˆ ˆ( ( ) ( ) ) ( ( ) ( ) )T T T

hjb cW F X G X u u Ru u Ru F X G X u
X X

 
 

 
= − + − + − +

 
 (30) 

Replacing (30) in (26), it leads to the dynamics of critic weight error ˆ
c cW W W= −  

being represented as: 

.
1

1 *

1
( ( ) ( )

1 4

1
( ) ( ) ( ( ) ( ) ))

4

T T T T

c c c c c aT

T T

W W W GR G W
X X

GR G F X G X u
X X X

  
  

 

  

−

−

 
= −  + 

+   

  
− − +

  

   (31) 

where ˆ
a aW W W= −  and ( )

1 T
t




 
=

+ 
 is bounded by 

1

1
|| ||


           (32) 

By eliminating the influence of actor weight error, one can obtain the nominal system 

as: 

.
T

c c cW W = −           (33) 

Similar to [22], it can be seen that if the ( )t  satisfies the persistence of excitation 

(PE) condition (34) then cW  exponentially converges to origin 

0

0

2 1 0( ) ( ) , 0

t

T

t

I s s ds I t



   

+

          (34) 

Theorem 1: Consider the surface vessel (1) with Assumption 1, 2, the bound 

conditions of ideal NN weights, activation function and its derivative are described in [22], 

and the signal vector ( )t  satisfies PE condition as well as the following condition is 

mentioned: 

3
1 2

1a

c
k k

k
           (35) 
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where the parameters in (35) are considered in (36), (37), (29) .Let’s consider the ARL 

based control scheme (9), using the kinematic controller (8) for the feedforward term (10) and 

the updating laws (26) (29) for the actual controller (24) then: 

1. The actor-critic weight errors aW  and cW  are UUB. 

2. The tracking of both vz  and z  in SV systems are also UUB. 

Proof: Thanks to the kinematic controller (8), the feedforward term (10) in proposed 

control scheme (9) enables us to achieve the corresponding model of surface vessels (11) .In 

order to choose the appropriate Lyapunov function candidate, a part of the completed function 

can be utilized by a function : [0, )N

cV R R  →  satisfying several following inequalities: 

( )
2 2

1 2

2

3

4

,

( )

c c c c

Tc c
c c c

c

c
c

c

c W V W t c W

V V
W c W

t W

V
c W

W

 

 

 
+ −   −

 






      (36) 

where 1 2 3 4, , ,c c c c R  are positive constant coefficients. Based on Assumption 2, and 

the bound conditions of ideal NN weights, activation function and its derivative [22], one can 

achieve the bounds of following functions as: 

1

1

2( )

c

T T

W k

GR G k
X X

 −



 


 

 

1 1 *

3

1 1
( ) ( ) ( ) ( ) ( ( ) ( )

4 4

T T T T T

a aW GR G W GR G F X G X u k
X X X X X

    − −    
− − + 

    
(37) 

For considering the stability of the whole of cascade ADP-based control system as 

well as the convergence of the weights of Actor NN and Critic NN, choose a Lyapunov 

function candidate as: 

*1 1
( ) ( , )

2 2

T T

L n n c c a aV z z V X V W t W W + +       (38) 

where *( )V X  is the optimal function associated with optimal control input 
*( )u X  and 

( , )c cV W t  is satisfied the inequality (36).It can be noted that the term 
1

2

T

n nz z  (   is a positive 

constant coefficient) is added to consider the tracking of the whole control system. Because 
*( )V X  is a smooth function and positive definite, there exist two class functions 1 2,   such 

that: 

*

1 2( ) ( ) ( )X V X X           (39) 

According to (36) and (39), one can imply that: 

2 2 2 22 2

1 1 2 2

1 1 1 1
( ) ( )

2 2 2 2
c a L c az X c W W V z X c W W     + + +   + + +

            (40) 
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Taking the derivative of LV  along the system trajectory under the control input ˆ( )u X , 

one can obtain that: 

*

*

ˆ( ( ) ) ( ( ) ( ) )

ˆ( ) ( )

T c
L n v n n

T

nom per a a

c

VV
V z J n z z F X G X u

X t

V V
W W G X

W X

 


= − + + +
 

 
+  +  − + 
 

    (41) 

where 

T

nom c cW  = −           (42) 

1

1 *

1
(

1 4

1
( ( ) ( ) ))

4

T

T T

per c a aT

T

T

w
W GR G W

X X

GR G F X G X u
X X

 


 

−

−

    
 =     

+      

    
− − +   

    

    (43) 

According to (16), it leads that: 

* *
* * *( ) ( ) ( ) ( ) ( )T T

T

V V
F X G X u X X Q X u X Ru X

X X

 
= − − −

 
    (44) 

Replacing (44) and optimal control (22), (29), (36) in (41), one can obtain that: 

2 2* * * *

3

*

4 2

11

ˆ( ) 2 ( )

( ) 2

( ) ( ) ( )
1

T T T T

L n n n v v v c

T T

c per a a a c

T

T Ta
a a c hjb

T

V z z J n z z Qz u Ru u R u u c W

c W W W W u R

W G X R G X W W
X Xw w

 



  
−

= − + − − + − −

+  + − −

  
+ − 

  +

  (45) 

Using Young inequality, one obtain that: 

2 2 2
( ) ( ) ( )

2 2 2 2

T T T

n v n n v n vz J n z z z J n J n z z z
   

  + = +     (46) 

From (24), (16)  and (37), one obtain: 

* * 1 1

1 1

4

1 1
ˆ2 ( )

2 2

1 1

2 2

T T

T T T T T

a

T T

T T

a

u R u u W GR G W GR G W
X X X X

GR G W GR G
X X X X

  




− −

− −

      
− = +   

      

      
+ +    

      

  (47) 

and the term per  is bounded by: 

0
3

1

c
per

v

 



           (48) 

According (37) and (30),one can achieve 
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11

1 1

* 2 2

1 1 2 1 1 2

1

( ) ( ) ( )
1

( ) ( ) ( )
1

1 1

4 4

( ( ) ( ) )

( )

( )

( ( ) ( ) ( ) ( )

)

T T Ta
a a c hjb

T

T T Ta
a a c

T

T T T T T T

c a a

a c a c

a

W G X R G X W W
X Xw w

W G X R G X W W
X Xw w

W w W GR G W GR G
X X X X

F X G X u W W






     

 

−

−

− −

 
−

 +

 
= −

 +

   
 − + −

   

− +  +

+ 2

1 2 3 1 1 2 3c aW     +

   (49) 

It can be seen that: 

2

2 2 2 1 2 ( ) ( )T T

a a a c a a c a a c a aW W W W W W W W    − = −  −    (50) 

Moreover, it should be noted that: 

2
* * *2 ( )T T T

maxu Ru u R R R− −             (51) 

Replacing (46) and (50) in (45), one can obtain the estimation that: 

 

2
2 2

3 1 1 2 2

2
2 24 0

1 1 2 3 4 3 1 1 2 3 1 1 2 2 1

1

1 1
( ) ( ) ( )

2 2

( )
2

( )

T

L v v a c a a

c
a a a a c max

V z z Q I z c W W

c
W R

v

       

 
               



 − − − − − − −

+ + + + + + + 

 (52) 

Using the classical inequality 2 21

4
ab a b


 + , we have: 

2 2

2 2 2

3 1 1 2 2 1 1 2 3

2 24 0
4 3 1 1 2 3 1 1 2 2 1

3 1 1 2 1

1 1
( ) ( ) ( )

2 2

(1 )( )

1

4 ( ) 2
( )

T

L v v max

a c a a a

c
a a a

a

V z z Q I z R

c W W

c

c v

    

        

 
          

    

 − − − − + 

− − − − +

+ + + + +
−

   (53) 

Let’s choose the parameters satisfying 3 1 1 2

1
, 2 ( ),0 1,

2
n min aQ c      =      

Define the vector [ , , , ]T T T T T

n v c az z z W W=  to analyze the tracking problem of the closed 

system. It can be seen that there exist two K class functions 3 4,   satisfying: 

2

3

2 2

3 1 1 2 2 4

1 1
( ) ( )

2 2

(1 )( )

T

n v v

a c a a

z z z Q I z

c W W z

   

     

 − + −

+ − − + 

     (54) 

Based on (54), the inequality (53) can be written as: 
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2
2

3 1 1 2 3 4

2 24 0
3 1 1 2 3 1 1 2 2 1

3 1 1 2 1

( )

1

4 ( ) 2
( )

L max a

c
a a a

a

V z R

c

c v

      

 
         

    

 − +  + + +

+ + +
−

 (55) 

It can be evident that 
L

d
V

dt
 is negative if ( )z t  lies outside the attraction region as: 

 

1 2 24 0
3 3 1 1 2 3 1 1 2 2 1

3 1 1 2 1

22

1 1 2 3 4

1
:

4 ( ) 2

( )

{ ( ( )

)}

c
z a a a

a

a max

c
z z

c v

R

 
          

    

     

−  + + +
−

+ + + 

 (56) 

Therefore, one can conclude that z  is UUB with the attraction region (56). Similar to 

analysis in [22], it can be seen that the size of attraction region is reduced by increasing the 

number of neurons in Critic NN. The proof of Theorem 1 is completed.   □ 

Remark 4: It is obviously different from the existing methods in [22], the proposed 

Lyapunov function candidate is added more 
1

2

T

n nz z  to consider the stability of whole of 

cascade control system with the additionally proposed estimations (46), (52), and (53). 

Furthermore, the state variables [ , , , ]T T T T T

n v c az z z W W=  is eliminated the term dX  in estimating 

the Lie derivative of Lyapunov function. It is noteworthy that the term 
2

( )max R   of attraction 

region (56) in dealing with uncertainties/input disturbances ( , )v , (1) has a better 

performance compared with [22]. The purpose of learning the Actor/Critic is to ensure the 

convergence to optimal controller, optimal value function: * *ˆˆ( ) ( ), ( ) ( )u X u X V X V X→ →  It 

can be seen that satisfying the PE (Persistent Excitation) condition of 
1

N

T

w
R

 


+ 
 

guarantees the convergences of estimated actor/critic weights ˆ
cW  and ˆ

aW  [22]. It is 

noteworthy that because this algorithm do not mentioned the identifier design and it focuses 

on the control design for SVs, the adaptation law of actor NN (29) and the estimations (37) 

Lie derivative of Lyapunov function candidate (38) have differences compared with the 

method in [22]. 

Remark 5: It should be noted that unlike the training method in [20, 21, 33], this 

paper handles the updating law of Critic NN using the optimality principle of integral of 

squared Bellman error. It is obviously different from the existing methods in [33], the 

proposed cascade ADP-based controller based on feed-forward term (10) is established to 

obtain the equivalent model (11) with the smaller number of variables. The ARL based 

cascade control design is also mentioned in [20]. However, the tracking problem in [20] is 

implemented by back-stepping technique with the modified Critic NN, since both of control 

loops are designed by ARL law. The advantage of this paper is that it can obtain the tracking 

of the whole closed system by the additional feed-forward term (11) without using classical 

back-stepping technique. Additionally, this paper considers the influence of 

Uncertainties/Disturbances ( , )v  in SV systems (1) with the proposed attraction region (56)

. 
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2.3 FORMATION CONTROL OF MULTIAGENT SYSTEMS 

2.3.1 Multiagent Systems 

Agent: An entity which is placed in an environment and senses different parameters 

that are used to make a decision based on the goal of the entity. The entity performs the 

necessary action on the environment based on this decision. 

The above definition comprises four keywords which can be further elaborated: 

1. Entity: Entity refers to the type of the agent. An agent can be a software, e.g. 

daemon security agents, a hardware component, e.g. thermostat, or a combination 

of both, e.g. a robot. 

2. Environment: This refers to the place where the agent is located. The environment 

can be a network in the case of traffic monitoring agents, a software when the 

agent is monitoring the actions of software components, etc. An agent uses the 

information sensed from the environment for decision making. The environment 

has multiple features that affect the complexity of an agent-based system: 

Accessibility, Determinism, Dynamism, Continuity. 

3. Parameters: The different types of data that an agent can sense from the 

environment are referred to as parameters. For instance, the parameters for a 

soccer robot agent are the position and speed of the team members and opponents, 

and the position of the ball. 

4. Action: Each agent can perform an action that results in some changes in the 

environment. For example, when a soccer robot kicks a ball the position of the ball 

changes. An agent can perform a set of discrete or continues actions. In a 

continues set of actions, the agent can perform unlimited actions, e.g. a soccer 

game. A discrete set of actions in contrast has a finite set of actions, e.g. an agent 

controlling a thermostat in a room. 

The goal of each agent is to solve its allocated task with some additional constraints, 

e.g. a deadline. To achieve this aim, the agent first senses parameters from the environment. 

Empowered with this data, the agent can build up knowledge about the environment. An 

agent might also use the knowledge of its neighbors. This knowledge along with the history of 

the previous actions taken and the goal are fed to an inference engine which decides on the 

appropriate action to be taken by the agent.  

While an agent working by itself is capable of taking actions (based on autonomy), the 

real benefit of agents can only be harnessed when they work collaboratively with other agents. 

Multiple agents that collaborate to solve a complex task are known as Multi-Agent Systems 

(MAS). 

Multi-Agent Systems (MAS) consist of autonomous entities known as agents which 

collaboratively solve tasks yet they offer more flexibility due to their inherent ability to learn 

and make autonomous decisions. Agents use their interactions with neighbour agents or with 

the environment to learn new contexts and actions. Subsequently, agents use their knowledge 

to decide and perform an action on the environment to solve their allocated task. It is this 

flexibility that makes MAS suited to solve problems in a variety of disciplines including 

computer science, civil engineering, and electrical engineering. To develop MAS require 

addressing a diverse range of complex challenges such as coordination among agents, 

learning, and security. 

Nguyen Xuan Khai
Highlight
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To study MAS, agents and their relations are modeled using graphs. Graphs have been 

extensively used in computer science for modeling complex systems, e.g. social media, and 

analyzing them mathematically. When MAS are modeled as a graph, each vertex represents 

an agent and an edge between two vertices indicates that the two agents are communicating 

with each other. The actions taken by an agent may potentially change the relations between 

agents and thus change the structure of the graph. The final decision made by an agent applies 

to the corresponding graph that might change the edges or structure of the graph.  

A graph ( ), ,=  consists of a nonempty finite set of nodes  1, , :i n  = , a 

set of edges or arcs   , and an associated weighted adjacency matrix [ ] n n

ija =  . 

In this paper, the considered graphs are assumed to be time invariant, i.e.,  is constant. If 

( ),i j  , agent i  can receive information from agent j  and agent j  is a neighbor of agent 

i . The set of neighbors for agent i  is denoted as ( ) : ,i j i j=   . Each element ija  of 

adjacency matrix is the weight associated with edge ( ),i j  and 0ija   if ( ),i j  . Otherwise, 

0ija = . Define the in-degree of node i  as 
1

n

i ijj
d a

=
=  and indegree matrix as 

diag{ } n n

iD d =  . Then, the graph Laplacian matrix is = − , 
n n . 

Let d

ip   be the position of an agent and 1[ , , ]T T T dn

np p p=   . For a given 

motion synchronization task, let ( )e p  be the synchronization error vector of appropriate 

dimensions so that ( ) 0e p =  when the task is achieved. Consider a continuously differentiable 

Lyapunov function ( )V e  satisfying ( ) 0,V e e   and ( ) 0 0V e e=  = . The corresponding 

gradient control law is 

( ): , , .
ii p ip V f e p i= − =         (57) 

The original gradient control law in (57) contributes to ( ) 0T

i ii
V e f f


= −   only 

depending on the positions of agent i  and its neighbors. The error dynamics of (57) is 

( ),
e

e f e p
p


=


         (58) 

where 1[ , , ]T T T dn

nf f f=   . Let ( ) { : ( ) }r e V e r =   where 0r   be the level set. 

The gradient control (57) is convergent if there exists 0 0r   such that the trajectory of (58)

converges to 0e =  for any initial error 0 0( )e r . In this case, 0( )r  is called the attraction 

region. 

Equation (57) does not consider motion constraints such as nonholonomic dynamics 

and velocity saturation so that real agents may not be able to follow the gradient flow if  

correctly in some applications. Therefore, the convergence of the entire synchronization 

system may not be guaranteed. In this paper, we consider general synchronization control 

tasks that comply with the following gentle assumption. Let   symbolize the Euclidian norm 

of a vector or the spectral norm of a matrix. 

Assumption 3: For a given synchronization task, functions ( )V e  and ( )e p  satisfy 

the following conditions. 

Nguyen Xuan Khai
Highlight
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1. ( )r  is compact for any 0r  . 

2. There exists 0 0r   such that 0 0e f=  =  in 0( )r . 

3. ( ) /e p p   and ( , )f e p  are bounded for bounded e . 

4. ( , )f e p  is continuous in e  and uniformly continuous in p . 

Assumption 3 indicates that 0e =  is asymptotically stable and 0( )r  is the attraction 

region according to the invariance principle. The attraction region may be the full space or a 

sufficiently small neighborhood of 0e = . The synchronization system is globally stable if the 

attraction region is the entire space; otherwise, the system is locally stable. 

The underlying graphs are assumed to be bidirectional and connected. If the graph is 

not bidirectional, the control laws may still work, but they may not be gradient control laws. 

For the sake of simplicity, suppose the weight for each edge to be one and let / 2m =  

denote the number of undirected edges. 

2.3.2 Formation Control 

This section proposed a modified gradient control law in (57) to cope with the 

nonholonomic constraint such that the velocity direction of each agent must align with its 

heading vector. 

 

Figure 2 Illustration of the modified gradient control law in (60) 

a) Modified Gradient Control Law 

The proposed modified gradient control law is 

,

T

i i i i

i i i

p h h f

h h i

=

=  
         (59) 

where i   is the angular velocity to be designed, ( ) d

ih t   is the unit-length 

heading vector of agent i , and   symbolizes the cross product. In (59), because 
T

i ih h  is an 

orthogonal projection matrix, the velocity ip  is the orthogonal projection of if  onto ih . 

Therefore, the velocity is aligned with the heading vector ih  and the nonholonomic constraint 

is satisfied. Because i ih   is always orthogonal to ih , the magnitude of ih  is invariant. To 

guarantee the entire multiagent system stays convergent in the sense that 0V → , i  is 

appropriately designed as follows 

i i ih f =            (60) 
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Equation (60) implies that i  make an attempt to rotate ih  to align with if  (see Figure 

2 for an illustration). Refer to [ ]  as the skew-symmetric matrix of a vector. For any 
3

1 2 3[ , , ]Tx x x x=   

3 2

3 1

2 1

0

[ ] : 0

0

x x

x x x

x x



− 
 

= −
 
 − 

        (61) 

Then, we have [ ]x y x y =  for any 3,x y . Substituting (60) into (59) gives 

2[ ] [ ] ( )T

i i i i i i i ih h h f I h h f = − = − = −  

where the last equability follows from the fact that 2[ ] Tx I xx− = −  for any unit vector 
3x . Then, the modified gradient control law is achieved 

( ) ,

T

i i i i

T

i i i i

p h h f

h I h h f i

=

= − 
        (62) 

It is worth noting that T

i iI h h−  is an orthogonal projection matrix that projects any 

vector onto the orthogonal complement of ih . Although derived in 3 , control law (62) is 

also valid in 2  because the case of 2  can be viewed as a special case of 3  by treating the 

plane spanned by ih  and if  as the x y−  plane in 3 . 

Theorem 2: Under Assumption 3, the modified gradient synchronization control law 

(62) is convergent with the same attraction region as (57). 

Proof: The error dynamics corresponding to (62) is known as ( / )e e p Mf=    where 
( ) ( )

1 1diag( , )T T dn dn

n nM h h h h =   . The time derivative of V  is 

0T T T

i i i i i i

i i

V f p f h h f
 

= − = −          (63) 

It follows that 0 0( ( )) ( )V e r   is positively invariant for any 0 0( )e r . Let 

{ : ( ) 0}e V e= = . Then, the system trajectory starting from any point in 0( ( ))V e  

converges to the largest invariant set in 0( ( ))V e  by the invariance principle. For any 

point in , 0T

i ih f i=  , which indicates either 0if =  for all i  or i ih f⊥  but 0if   for 

certain i . The first case follows that 0e =  by condition 2) in Assumption 3. Therefore, the 

error converges to zero and the is proved. The second case is unfeasible. Assume i ih f⊥  but 

0if = . Then, 0T

i i i ip h h f i= =  , which implies that all the agents are immobile. As a result, 

if  is time invariant for all i . However, it follows from i ih f⊥  that ( ) 0T

i i i i ih I h h f f= − =  . 

As a result, ih  is rotating. It is impossible to maintain i ih f⊥  if if  is time invariant while ih  

is rotating. Finally, the system trajectory will escape from .    □ 

Theorem 2 reveals that if 0( )r  is the attraction region of the gradient system, then it 

remains an attraction region for the modified gradient system. As a result, if the original 

gradient control is globally (respectively, locally) stable, then the modified one is also 
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globally (respectively, locally) stable. The initial values of the heading vectors { (0)}i ih   do 

not affect the convergence. The final values { ( )}i ih   are not specified. 

b) Application to Surface Vessel Models 

Surface vessel models are new topic which can be considered in multiagent 

synchronization control. We apply (64) to analyze the specific control law for surface vessel 

agents moving in the plane. However, it is noticeable that (65) serves agents moving in both 

two and three dimensions. Let 3[ , ]T T

i i ip =   include the planar position 
2[ , ]T

i i ip x y=   and heading angle i   in the earth-fixed frame of agent i . The surface 

vessel model described the motion of agent i  as follows 

cos

sin

i i i

i i i

i i

x v

y v





 

=

=

=

          (66) 

where iv   and i   are the linear and angular velocities. Control law for the 

surface vessel model is depicted as 

[cos ,sin ]

[ sin ,cos ]

i i i i

i i i i

v f

f

 

  

=

= −
        (67) 

 

Figure 3 Geometric interpretation of the control law in (9) 

Theorem 3: Under Assumption 3, control law (67) designed for the surface vessel in 

(66) is convergent with the same attraction region as (57). 

The convergence of the control law is proved below. 

Proof: Let [cos ,sin ]T

i i ih  =  and [sin ,cos ]T

i i ih  ⊥ = . Note that i ih h⊥⊥ . 

Substituting control law (67) into the surface vessel yields T

i i i ip h h f=  and ( )T

i i i ih h h f⊥ ⊥= . 

Because ( )T T

i i i ih h I h h⊥ ⊥ = − , the closed-loop system has the same expression as (62). The 

convergence property then follows from Theorem 2.      □ 

The geometric illustration of the control law in (67) is shown in Figure 3. The initial 

values of the heading angles do not affect the convergence. The final values are not specified. 

Equation (67) is used to derive a displacement-based formation control law for surface 

vessels. 
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Displacement-Based Formation Control 

In displacement-based formation control, the objective is to guide the agents from 

some initial states to converge to a desired geometric shape defined by constant relative 

positions * *

( , ){ }i j i jp p − . This formation control problem degenerates to the rendezvous 

problem when * *

i jp p= . A Lyapunov function is depicted as 

2
* *1

( ) ( )
4

i

i j i j

i j

V p p p p
 

= − − −        (68) 

The target pattern is achieved if and only if 0V =  because the graph is bidirectional 

and connected. The displacement-based formation control law [24], [30] is described as 

follows 

* *( ) ( )
i

i i i j i j

j

p f p p p p


 = = − − −         (69) 

Consider any oriented graph and define the error state as 
* *( ) ( )k i j i je p p p p= − − −  

with 1,k m=   and *( )( )e I p p=  − . Then, 
2

1
( ) 1/ 2

m

ki
V e e

=
=  , /e p I  =   is 

constant, f  is continuous in e , and f  is bounded when e  is bounded.  Since 

* *( ) 1/ 2( ) ( )( )TV e p p I p p= −  −  and *( )( )p f I p p= = −  −  we have 

0 0 0f V e=  =  =  and the attraction region 0( )r  is the entire space dm . Therefore, all 

the conditions in Assumption 1 are satisfied. 

Substituting if  into (67) yields 

( )

( )

* *

*

* *

*

[cos ,sin ] ( )

[cos ,sin ] ( )( )

[ sin ,cos ] ( )

[ sin ,cos ] ( )( )

i

i

i i i j i j ij

i i

i i i j i j ij

i i

v p p p p

I p p

p p p p

I p p

 

 

  

 





= − − +

= −  −

= − − − +

= − −  −




     (70) 

The agents will move in a square formation if an appropriate vector 

 * 0,0, ,0, , ,0,
T

a d d d d= − −  is added to 

( )

( )

* *

* *

* *

* *

[cos ,sin ] ( )

[cos ,sin ] ( )( )

[ sin ,cos ] ( )

[ sin ,cos ] ( )( )

i

i

i i i j i j ij

i i

i i i j i j ij

i i

v p p p p

I p p a

p p p p

I p p a

 

 

  

 





= − − +

= −  − −

= − − − +

= − −  − −




     (71) 

where 
*a  is the length of the square. 
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2.4 OVERALL CONTROL SYSTEM OF SURFACE VESSELS  

Surface 

Vessel

ADP-based 

Controller

Kinematic 

Controller

Formation 

Control Law 

i

di
i idiv

iv

*,d a

 

Figure 4 Overall control scheme of surface vessel formation 

Figure 4 describes the overall control scheme of surface vessel formation. Generally, 

two control loops are depicted in this paper but three control loops can be analyzed as well. 

Inputs of the system are reference trajectory of virtual leader d  and the formation 

which is refered as the displacement of each SV relative to virtual leader *a . 

The outer control loop with formation control law produces the desired trajectory for 

each inner control loops. By this way, the multiagent system of surface vessels would 

maintain a formation while moving. 

The inner control structure using kinematic controller and then ADP-based controller 

guarantees the desired trajectory tracking produced by the outer loop control. 

2.5 SIMULATION RESULTS 

In this section, a simulation example are provided to demonstrate the effectiveness of 

the developed procedures. The objective is a predefined formation of four SVs synchronously 

moving along desired trajectories. The parameters of each surface vessel are chosen as in [20] 

with the following inertia, Coriolis 

11
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3
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d
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d

d

d

 
 

=
 
  
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 

=  
 + − 

 
 

=

+

 
 

+



=

=

+ +

+

− −

= − − +

= + +

=

 



Báo cáo công trình sinh viên nghiên cứu khoa học năm học 2020-2021 

  

 

 

Figure 5 Communication graph of four agents 

Using the graph definition in Session 2.3.1 the cooperative configuration of the 

multiple robots is presented by the distributed communication graph as Figure 5. The graph 

Laplacian matrix is 

0 0 0 0

1 2 0 1

0 1 1 0

0 1 1 2

 
 
− −
 =
 −
 

− − 

 

Due to considering only on the surface, the potential vector ( )g   can be assumed to 

be 0. The desired trajectory is a circle which is described by 

( ) [12sin(0.2 ), 12cos(0.2 ),0.2 ]T

d t t t t = − . The parameters of proposed controller for each 

agent consist of kinematic control law, feedforward, ARL algorithm being chosen as 

1 2

0 1 3

2 10 10 20

0.01 20 12 1.

c a ak k k

Q I R



  

= = = =

= = = = =
 

For the training of Actor-Critic architecture to achieve ARL based optimal control, the 

dual NNs are designed with 12 nodes in Actor and Critic part of each agent. The smooth 

activation function 12( )X   is chosen as 

2 2 2

1 1 2 1 3 2 2 3 3

2 2 2 2 2 2 2 2 2 2 2 2

1 7 2 8 3 9 1 4 2 5 3 6

( ) [ , , , , , ,

, , , , , ]T

X X X X X X X X X X

X X X X X X X X X X X X

 =
 

The updating laws are implemented based on (26), (27) for critic NN and (29) for 

actor NN, respectively. 

Initial states of four agents are as follows 

1

2

3

4

(0) [0,0,0]

(0) [20,0,0]

(0) [10,0,0]

(0) [-10,0,0]

(0) [0,0,0] , 1, 2,3, 4

T

T

T

T

T

iv i









=

=

=

=

= =	
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Figure 6 Tracking trajectories of four agents 

 

Figure 7 Formation illustration of four agents 

The first simulation establishes a formation as depicted in Figure 5 by setting 
* [ 25,0,0,0,25,25,25, 25]Ta = − − . Figure 6 and Figure 7 shows that the synchronised 

formations in ix  and iy , 1, 2,3,4i = , are maintained. The arrows on the trajectories in Figure 

7 indicate the states at 0,10,20,30( )t s=  respectively. 
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Figure 8 The convergences of critic weights 

 

Figure 9 The convergences of actor weights 

The trained weights in Critic and Actor part of the first agent is shown in Figure 8 and 

Figure 9 respectively. It is clear that all weights rapidly converge to the optimal solution. The 

other agents behave similarly. 

 

Figure 10 Second formation illustration of four agents 
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In the second simulation, a square formation by  * 0,0,25,0,25, 25,0, 25
T

a = − − , 

shown in X is well-maintained. 

 The proposed formation controller applied on the built-in multiple SVs model 

reaffirms the correctness of the designed controller. It is noteworthy that the proposed ARL 

control law has an advantage in computation compared with [20, 33]. Through two simulation 

scenarios, the controller brought the ship system back to the setting formation. 
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III. CONCLUSION 

In this article, a novel ARL based trajectory tracking cascade control design has been 

proposed for uncertain surface vessel systems. Research on a system of four SV objects and 

propose a method to control the formation, solving the problem of the distribution of agents in 

space. The unification of optimality and UUB stability of the closed system is proven by 

appropriate Lyapunov function candidate. The simulation further demonstrated the 

effectiveness of the proposed ARL based control scheme. The result is that the actual 

trajectory of the object has adhered quite well to the pre-set orbital and the agents are 

distributed according to the formation placed in space. 
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