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Figure 1: DEQ-MPC improves upon Diff-MPC by
jointly solving both MPC parameter estimation (θ) and
trajectory optimization (τ ), resulting in richer feedback,
consequently, increased representational power, nicer
gradients, and improved amenability to warm-starting.

Differentiable Model Predictive Control (Diff-
MPC) layers [1] integrate MPC as a differen-
tiable layer within neural network architectures,
embedding constraints and cost functions into
the network and enabling true end-to-end train-
ing of control policies [2, 3]. While offer-
ing several advantages, standard differentiable
MPC layers often treat the optimization solver
as a black-box differentiable layer within the
neural network (NN) architecture. This simpli-
fication, while convenient, overlooks the unique characteristics of MPC solvers that set them apart
from typical NN layers. MPC solvers are implicit layers and hence inherently iterative as opposed
to typical explicit layers. The outer problem often suffers from ill-conditioned, discontinuous and
non-convex gradient landscapes [4, 5]. Additionally, MPC solvers frequently possess specialized
structures that enable efficient warm-starting [6, 7] – a valuable property in recurrent control scenar-
ios that is not fully leveraged in differentiable MPC frameworks.

To address these limitations, we propose Deep Equilibrium Model Predictive Control (DEQ-MPC),
a novel approach that unifies the optimization solver and the neural network architecture. Instead
of treating the optimization layer as just another layer within the network, we formulate a joint
inference and optimization problem, where we treat the network inference and the optimization
problem as a unified system and jointly compute a fixed point over the network outputs and the
optimizer iterates. This approach, illustrated in Figure 1, allows us to condition the network outputs
(optimization parameters, θ) on the optimizer state τ and vice versa. Interestingly, this can be
expressed as a single constrained optimization problem:

τ∗0:T , θ
∗ = argmin

τ0:T ,θ

∑
t

Cθ,t(τt) (1)

subject to x0 = xinit, xt+1 = fθ, hθ(τt) ≤ 0, (2)
θ = NNϕ(xinit, o, τ0:T ), t = 0, . . . , T, (3)

where the last constraint expresses the neural network inference as an equality constraint. Typical
non-linear solvers struggle with this due to the resulting constraint Jacobians of the neural network
constraint. We solve this using the alternating direction method of multipliers (ADMM) algorithm
[8], alternating between (i) solving the MPC optimization problem (with fixed θ), (1) and (2) using
the augmented Lagrangian (AL) method and (ii) the constraint projection step, (3) (i.e, the standard
neural net inference to compute θ with fixed τ ). Specifically, we alternate between the following
two operations for N iterations or until convergence,

θi = NNϕ(xinit, o, τ
i−1), (4)

τ i = MPC-1θi(xinit, τ
i−1), (5)

where MPC-1 performs one solver iteration of the AL solver, with the most recent parameter esti-
mate θi from the network and warm-started using τ i−1 from the last MPC-1 iteration. The initial
value τ0 are initialized at xinit and zero controls across time steps. We refer to each alternating
step as a DEQ-MPC-iteration, with the super-script, i, denoting the iteration count as illustrated in
Figure 1. This iterative inference/optimization approach enables the network to provide an initial
coarse parameter estimate and iteratively refine it based on the solver’s progress.
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This joint inference/optimization framework also allows us to explore several interesting aspects
of the solver and architecture design. Specifically, for the optimization solver, we implement an
augmented Lagrangian (AL) solver which works well with warm-starting and is robust at handling
arbitrary non-linear constraints. This is important for the joint fixed point process as it allows us
to change the optimization parameters (i.e, network outputs, θi) between successive optimization
iterates. For the architecture, we experiment with parameterizing the network architecture itself
as a Deep Equilibrium model (DEQ) [9], a type of implicit neural network that computes the out-
puts/latents as a fixed point of a non-linear transformation. It can be seen as an infinite depth network
which applies the same layer an infinite number of times eventually reaching a fixed point in the
outputs/latents. This iterative fixed point finding procedure blends nicely with the equilibrium/fixed
point finding nature of the overall system. We observe nicer stability properties when using a DEQ
as the network architecture when going to more complicated settings.

Our unified approach enables richer representations by allowing the network to adapt its fea-
tures/outputs depending on the solver state. Furthermore, the inherently iterative nature of the net-
work inference and solver optimization makes it very convenient to accommodates warm-starting on
both the network outputs θ and the optimizer iterations τ , improving both computational efficiency
and solution quality. DEQ-MPC thus offers a more robust and flexible framework for integrating
optimization-based control with deep learning.

Results. We compare the performance of Diff-MPC and DEQ-MPC. Both approaches are evalu-
ated with two variants: one using a DEQ network architecture and the other using a feedforward
network. All experiments are conducted in a Quadrotor-Pole environment, where the quadrotor is
initialized at a random position with an attached pole. The objective is for the quadrotor to reach the
origin while swinging up the pole.
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Warm-starting ablations (Figure 2): We observe that DEQ-MPC variants retain their performance
even with few warm-started optimization iterations unlike Diff-MPC models. This is particularly
advantageous in streaming settings where computational efficiency is crucial.

Constraint hardness (Figure 3): As the complexity of constraints increases, such as adding obstacles
as inequality constraints and increasing obstacle size, DEQ-MPC’s performance remains robust. No-
tably, DEQ-MPC variants outperform Diff-MPC models as task difficulty increases, demonstrating
better scalability and adaptability to complex environments.

Scalability: network capacity and generalization (Figures 4 and 5): DEQ-MPC demonstrates clear
advantages in scaling both in terms of network capacity and data availability. The results indicate
that DEQ-MPC models effectively utilize higher network capacities, continuing to improve as model
size increases, while Diff-MPC models show saturation beyond certain capacity limits.

Cost sensitivity ablations (Figure 3): As the problem sensitivity increases by varying cost parame-
ters, DEQ-MPC models show more stability compared to Diff-MPC models, which become unstable
with ill-conditioned cost matrices. This robustness is crucial for maintaining reliable performance
in sensitive control problems.

Overall, DEQ-MPC demonstrates clear advantages in warm-starting, constraint handling, scalability,
generalization and robustness. These results suggest that DEQ-MPC is well-suited for complex
control tasks, especially when requiring efficient streaming and robust handling of hard constraints.
Future work will explore broader applications of our approach beyond controls and robotics.
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